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Solutions of the Saint-Venant problem for a cylinder with helical anisotropy are presented in the form of a linear combination 
of elementary homogeneous solutions, the construction of which is reduced to boundary-value problems for ordinary differential 
equations with variable coefficients. These problems are integrated using analytical and numerical methods, and the elements 
of the stiffness matrix are investigated over a wide range of parameters. It is established that when the cylinder is stretched the 
sign and value of the torsional deformation depends considerably on the value of the relative angle of twist of the helices. 
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A cylinder with helical anisotropy can be represented, in particular, as the result of the helical winding 
of layers of thin filaments made of rigid material on a cylindrical surface, with a simultaneous coating 
of these with a polymer material. Homogenization methods [l, 2] can be used to determine the elastic 
characteristics. Hence, a transversely isotropic material is obtained with an axis of symmetry directed 
along the tangent to the helices. When a cylinder with helical anisotropy is stretched or compressed, 
in addition to longitudinal deformation there will also be torsional deformation and, conversely, under 
torsion in addition to torsional deformation there will also be longitudinal deformation. Naturally twisted 
rods will also possess similar properties [3]. Hence such rods can be used in devices which convert 
longitudinal deformations into longitudinally twisted deformations and vice versa. 

1. FUNDAMENTAL RELATIONS OF THE THEORY OF ELASTICITY 
IN THE CASE OF HELICAL ANISOTROPY AND 

FORMULATION OF THE PROBLEM FOR A CYLINDER 
WITH HELICAL ANISOTROPY 

Consider a cylindrical body, occupying a volume Y = S x [0, L], where S is the transverse cross-section 
of the cylinder and L is its length. We will denote the side surface by r = &S x [0, L], where &’ is the 
boundary of S. We connect the origin of a Cartesian system of coordinatesxI,x2, x3 with the geometrical 
centre of gravity of one of the ends of the cylinder. We will call this system of coordinates the fundamental 
system. To describe the helical anisotropy we will introduce an accompanying cylindrical system of 
coordinates Y, 8, z, connected with the fundamental system buy the relations 

x, = rcosecosw - rsin0sinz.7. 

x2 = rcosesinzz + rsinecoszz (1.1) 

x3 = z 

Here and below we assume that z = const. 
When Y = const and (3 = const relations (1.1) are the parametric equations of a helical curve, where 

z = 2dh, where h is the pitch of the helix. We will represent the radius vector of points on the helical 
curve in the form 

R = rei + ze; 
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Here 

e; = e, = i,(cos6coszz - sin8sinrz) c i,(cost3sinrz + sin9cosTz) 

e; = e, = -i, (sin8cosrz + cos9sinzz) + i2( cos6coszz - sin0cosTz) 

e; = e, 

and i, are the unit vectors of the fundamental system of coordinates. 
We will connect the following natural frame of reference with the helical curve 

e, = n, e2 =b, e3= 

where n, b and t are the unit vectors of the principal normal, the binormal and the tangent respectively. 
Using the formulae 

dRlds = t, dtlds = kn, b = t x n 

ds = gdz, g2 = (1 +x2), x = rr 

where k = ~~r/g~ is the curvature of the helix, after reduction we obtain an orthogonal matrix from basis 
ej to basis ei 

A= 

We will assume that the material of the cylinder is locally transversely isotropic with axis of symmetry 
of the mechanical properties directed along the tangent to the helical curve. For the generalized Hooke’s 
law we will use the matrix form of writing the stresses and strains [4] 

bi = cijej, 'ji = cij 

Here 

A similar system of symbols is used for the components of the strain tensor. 
For a transversely isotropic material, the elastic properties in basis ej are defined by five moduh 

~11, ~12, ~13, ~33, ~4, where 

c22 = Cl19 C66 = (Cl1 - c,,w 

c,5 = c,(j = c25 = C2b = c25 = C2G = c35 = c3e = 0. 

We will introduce the following notation 

i= ,...) 1 4 

(1.2) 

As a result of changing from basis ej to basis ei we obtain the following relations of the generalized 
Hooke’s law in the accompanying system of coordinates 
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IZ, = %;e,,+%$eoe +%;ezz + %ke@,, Z2 = %;erz + %e;ie,, 

c;, = Cl19 c;* = (c,* + c13x2)lg2 

c;j = (Cl3 + c,*x2)lg2, c;4 = x(c13 - c,*yg* 
c;* = [Cl1 + (2c,, f 4c,)x2 + Qx41/g4 

c;j = [Cl3 + (Cl, + c33 - 4c,)x2 + c,,x411g4 

ci4 = [(C,J + 2c44 - CII)X + (c33 - Cl3 - 2c,)n311g4 

ci3 = [c33 + 2(c,, + 2c,)n* + ct,x4]Ig” 

cj, = [(c33-c ,3 - 2cJ.x + (cu + 2c,, - 2c,,)x3]lg4 

CL = [c~ + (- 2cr3 + cr , + c33 - 2c,)x* + cMx4]/g4 

c& = (CM + c,,x2)lg2, c& = x(c, - c&/g2 
I 2 2 

C66 = (Cfj6 + C& Yg 

t I 
cji = cij 

(1.3) 

The components of the strain tensor in the basis of the accompanying system of coordinates can be 
expressed in terms of the displacements u,, us, U, by the following formulae 

e = 
ri- a,% eee = (ur + aeueyY, e,, = Du, 

2ere = arue + (aour - 2.+)/r, 2e,, = aruz + DUE, 2eze = aou, + Du, (14 

The equilibrium equations in stresses in this case have the form 

arp6,,) - bee + aoGre + rmrz = 0 

a,(ror8) + ore + aeOee + ~DcJ,, = 0 

a,( ro,.J + &pez + mu,, = 0 

In formulae (1.4) and (1.5) 

(1.5) 

a, = 2, a, = $, a = & D = ada, 

We will assume that the side surface of the cylinder is stress-free, i.e. 

Introducing the vector u = {u,, ua, u,}, the problem can be represented in the following vector-operator 
form 

M(a, Z)M = a2A,u + aA,u + A,u = 0 (1.7) 

N(a, T)U I (aBou + B,~)J, = 0 (14 
Here (1.7) are the equilibrium equations in displacements, (1.8) are the boundary conditions (1.6), and 
Ak and Bi are matrix differential operators with respect to the variables r, 0 of the zeroth, first and second 
orders respectively; the specific form of these operators will not be given here due to their complexity 
and since the method of constructing them is obvious. We note also that, by virtue of relations (1.3) 
the coefficients of these operators depend on Y and ‘t. 
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Searching for a solution of problem (1.7), (1.8) in the form 

u = aeYZ 

we obtain the following eigenvalue problem in a section 

M(y)a = 0, N(y)a = 0 (1.9) 
The common structure of the spectrum, the properties of the system of natural and associated vectors 

of equations of type (1.9) and the properties of the elementary solutions have been described in sufficient 
detail in [5,6]. Hence, we will only describe the group of elementary solutions on which the construction 
of the solution of the Saint-Venant problem of the stretching, twisting and bending of a cylinder with 
helical anisotropy is based. We will call this group of elementary solutions the Saint-Venant elementary 
solutions. 

2. THE SAINT-VENANT SOLUTION 

We will initially construct the Saint-Venant elementary solutions. Retaining the basic idea [3], we will 
write the vector of the solid displacement in the accompanying system of coordinates. We have 

u; = C,e’W + c,e-‘W -I- zC,e”‘V -I- zc,e-“W 
0 

a, = iCleiv - iC,e+ + izC3erW - izC,e+ - C6r 

a,” = - C3reiW - C,re+ + C, 

yJ = zz+e 

c, = ;(a;-ia;), c, = Cl, c, = goz+ iq), Cd = 1;s 

c, = a;, c, = wg 

Here ai and ak are the projections of the vector of the translational displacement and rotation of 
the cylinder as a rigid body onto the axis of the fundamental system of coordinates. 

It follows from formulae (2.1) that 

y0 = 0, y, = PC, y-i = -iz 

Natural values of eigenvalue problem (1.9) exist. The structure of the root subspaces of eigenvalues 
remains the same as in the case of a naturally twisted rod [3], which enables us, in the case of a cylinder 
with a circular cross-section y1 d r G u2, to write the elementary Saint-Venant solutions in the form 

u,(z) = as, %(z) = a6? u,(z) = e”a, 

-%(z) = $(z), u5fz) = e”(za, +a,), u,(z) = ii,(z) 

u,(z) = zal +a7, u,(z) = za2+a8 

n9Czl = eiw ;a,+za,+a, , ( 
2 

1 
ulo(z) = iig(z) 

3 
Z2 

I -ga,+p+za,+a,, ,, u,*(z) = U,,(z) 
/ 

(2.4 

Mere 

a, = (O,O,I}, a2 = (O,r,O}, a3 = {1,&O}, a4 = ii, 

a5 = a6 = iOyO,-r)r al = ~~r,~,~~,I,~,,~], & = 7, 8 GW 

a9 = {ar,9t&3,9taZ,9>5 alo = a,, all = {4,7, ae,7, ia,,), a12 = -%I 
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In the case of a cylinder with a circular cross-section considered, the components of the vectors 
a[ (I = 7, . . . ) 12) depend only on Y. To formulate the boundary-value problems for determining them 
we must return to relations (1.2)-(1.6). 

We will consider the problem of determining the components of the vector a7 in more detail. Using 
relations (1.2) ad (1.4) we obtain the following expressions for the components of the stress tensor 

Yz 1.7 (2.4) 

From the equilibrium equations (1.5) and boundary conditions (1.6) (nr = 1, no = 0) we have 

%(r%,7) - %e,7 = 0, o,,,7(ra) = 0 (2.5) 

W%, 7) + ore, 7 = 09 %$,(~a) = 0 (2.6) 

&(ro,,) = 0, qZ(ra> = 0 (2.7) 

It follows from Eqs (2.6) and (2.7) that 

0 re, 7 = cJrz, = 0 

It follows from these relations and expressions (2.6) for o,,,~, a,, 7 that 

al3 = X,r+X,, a, = X2 

where X0, Xi and X2 are arbitrary constants, which can be equated to zero. 
Substituting the expressions for or, 7, c+, 7 from (2.4) and (2.Q to determine a, 7 we obtain a boundary- 

value problem for the second-order ordmary differential operator 

zar.1 = Fly lar,ljr=ra = f,,, 

Za_=d 
dr 

la z c’ CC! + 1,’ 
“dr r ‘* 

a 

F, = -d*+c;l, fa,7 = -c’,3(r,J 
dr 

(2.8) 

In a similar way we obtain that 
as = far, s,o, O) 

In this case also the determination of a r, 8 reduces to boundary-value problem (2.8) with the new right- 
hand sides 

F, = - d(r2c;J + rCI 
dr 24, fa, 8 = -rac;4(ra) 

The stresses are given by the following formulae 

(2.9) 

We will introduce the following notation 

b rr, I 

$B,,, = bwJ ) a*,[ = 
b zz, 1 

bez, I 
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For the elementary solution ~9, the stresses corresponding to it are given by the following formulae 

ls I,9 = e”%,,,, C2,P = eW32,9 

Bl.9 = 
~;d~~~;U”9-a~,9_;e;r_~~a”g 

r r 

B 2.9 
da,,g +%9-%,P 

dr r > 

(2.10) 

(2.11) 

In this case, all the components of the vector a9 are non-zero and are determined by integrating the 
boundary-value problem obtained after substituting expressions (2.11) into the following relations 

d(rblT, 9) _ b 
dr re, 9 

_ b 
0e,9 = Q, 6,,9(5A = 0 

d(rb4 9) + b 
re, 9 + bee, 9 = dr 0, b,e, Ar,) = 0 

d(rbr.9) + b 
dr ze, 9 = 0, b,,,(rJ = 0 

As follows from the first two equations of (2.12), this system has a first integral 

b rr,P +b,e,9 = 0 

For the elementary solution all, the stresses corresponding to it are given by the formulae 

(2.12) 

(2.13) 

(2.14) 

Substituting expressions (2.13) into the equilibrium equations and boundary conditions, we obtain 
the relations 

dwr,,,)+b _b 

dr re, I I ee, II+ rbrz,9 = 0, 4, Il(ra) = 0 

d( rbre, I i 1 
dr +b re, 11 -bm,~+rb,~,P = 0, bre,ll(rJ = 0 

d(rbm, I1 J 

dr 
-b ze, 11+ rbZz,P = 0, brz, ,l(r,) = 0 

(2.15) 

These relations, after substituting expressions (2.14) into them, lead to a boundary-value problem for 
three second-order differential equations in the components a, 11, ae, 11, a, 11. The following first integral 
is obtained from the first two equations of (2.15) 

b TT, II -b $b,Z, 9 r0, I I = r - be, 9)rdr 

We will now consider the Saint-Venant problem. We will assume that the following boundary conditions 
are specified on the ends of the cylinder 

‘j = 0 when 2 = 0 (2.16) 

0j3 = pj when z = L (2.17) 
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Here uj andpj are the projections of the displacement vector and of the vector of the specified external 
forces onto the axis of the fundamental system of coordinates. 

The Saint-Venant solution will be sought in the form 

6 12 

u = c C,u,k) + c C,u,(z- L) (2.18) 
I= I I=? 

By satisfying boundary condition (2.19) in the integral sense and using the relations of generalized 
orthogonality [6], we obtain 

d,,G+d,,Cs = QD d&+-d,& = M, 
d,,C9+d&,, = M,+iM,, d33C,, = -Q,+iQ, 

c, = c,, c,, = c, 

(2.20) 

Here 

r1 FI f-1 

d,, = -2rjr2bzz,9dr, du = 2ni r b,z,lldr 7 2 

rl rl 

(2.21) 

and Qj and Mj are the projections of the principal vector and the principal moment of the external forces 
onto the axis of the fundamental system of coordinates. 

Relations (2.20) and (2.21) enable us to give the following interpretation to the elements of the stiffness 
matrix: dll is the extension-compression stiffness of the rod, dz2 is the twisting stiffness, d12 is the 
extension-compression and twisting coupling coefficient and d33 is the bending stiffness. 

Relations (2.20) and (2.21) are exact in the sense that the boundary-layer part of the solution of the 
three-dimensional problem, which is produced by the self-balancing part of the external stresses (2.17), 
has no effect on their form. 

The constants Cr, . . . , C6 are determined when boundary conditions (2.16) are satisfied. Their exact 
values can only be determined by solving infinite systems of algebraic equations, similar to those 
constructed previously in [7] for an isotropic cylinder. In the case of long cylinders (h = r2/L < l), these 
constants are defined by the following approximate formulae 

c, = -LC,, c, = -LC,, c, = -;L2C,,p, c, = c3 

c, = 
( 

;L3c,, -;Lk, 
! 

PL, c, = c, 

3. METHODS OF CONSTRUCTING ELEMENTARY 
SAINT-VENANT SOLUTIONS AND THE RESULTS OF 

A NUMERICAL ANALYSIS 

We will now consider the problem of constructing solutions of problems (2.8), (2.11), (2.12) and (2.15) 
and using them to calculate the elements of the stiffness matrix d,. 

We will first consider the construction of analytical solutions by the small-parameter method, assuming 
that the dimensionless parameter 2. = v2 <i 1. These solutions, in addition to the fact that they enable 
us to obtain a clear representation of the effect of the different parameters of the problem on its solution, 
are useful as a test for the numerical solution. 
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To construct approximate solutions we use formulae (1.3) and expand c& in series in t. Retaining 
the principal terms of the expansions, we obtain 

& = 

c;3 = 

Cl4 = 

ci4 = 

c;* = Cl13 c;* = cl*, 
1 

c,3 = c;3 = Cl3 

CA = c;s = c44, 
a 

c339 ‘66 = c66 

MC13 - c,*L c;4 = WCt3 + 2c,,-c,,) 

rr(C33 - cl3 - 2c44)~ c;6 = Mq4 - c66) 

(3.1) 

We will seek a solution of boundary-value problem (2.8) in the form 

a WI (1) 
r.1 = a7 i-Ta, + . . . (3.4 

After substituting expressions (3.1) and (3.2) into relations (2.8), we obtain the following boundary- 
value problem for determining the principal term 

(0) 
d*a?‘+ Na:O)_a, = o 

(0) day) a7 

dr* rdr ,_* (- ‘I’ dr + “2-F > r = ?.a = -c13 

We will present the final form of the solution, omitting the further elementary stages of the integration. 
We have 

a r,l = - v’r + 0(-c2) (3.31 

In a similar way we obtain 

a r, 8 
= 2 

11 i L 
K,!?+K, (l+P2Jr+ P24 1 f o(T3) 

f-2 Cl1 + Cl2 r(c,, - ~~2) I I 

t 2 I 2 
a r, 9 = + + O(T2), ae.9 = - v+ + O(z2) 

3rfri 
-3(r:+r$r-- 

r 
+ O(T3) 

2K2 2 2 3 

%, I1 
KrIr2 

= - 
8 

i r -K(rf+r$r-- 
r 1 

c O(T2) 

a, 11 = Q(T), ae,ll = 00) 

In formulae (3.3) and (3.4) 

E = c33 - Z!v’c,,, G’ = c4 

K, = 3~~~ - 2c,, -c,, + 2c, 

A-, = 
2 

- 3c12 + 3cf1 - 2c,,(c,, - c12) - %c~(~c,~ c $c,~) 

K, = E’-2(1 +v’)G’, K = 3K,+v’G’/2, p = r,/r2 

v’ = (Cl, + CI2VC,3 

We will present expressions for the principal terms of the components of the stress tensors. 
For I = 7,8, we have 

d zz, 1 = E+~(T~), be&g = E’r+Q(T*), ore,, = o,z,I=O 

0 rr, 7 =0 ee, 7 = W2)9 0g,,7 = 0rr,8 = 0ee.g = 0,,8 ” O(z) 

(3.4) 

For 1 = 9, 11, we will confine ourselves to giving the principal terms of the expansions of the traces 
of the stresses 
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h&9 = -E'r + O(T*) 
2 2 

b y1r2 i-z, 9 
-r:-r;+- 

r2 

+ O(T3) 

b 

b b rr.9 = ~9 = b,e,9 = W2) 

b TL, 11 

b &,I1 = G’ 

b t-r, 11 = b ee.11 = b,z,ll = bre.11 = O(T) 

The principal terms of the expansions of % have the form 

d;, = SE’, d!j2 = c,J, 

42 = TJ,K,, d,, = E’J,, d,, = O(T) 

S = n(ri-rt), J, = n(r$rT)/2 

The formula for & gives a representation of the effect of the parameters of the problem on the 
interaction between twisting and tension-compression for small values of ro. In particular, the coefficient 
Kz represents the degree of anisotropy of a transversely isotropic material. In this formula E’, G’ and 
v’ are the technical constants of elasticity [4]: the tensile and shear moduli and Poisson’s ratio respectively. 
Note that Kz = 0 for an isotropic material. 

To estimate the effect of the parameters zo and p on the elements d~j over a wide range of variation 
of these parameters, we carried out a series of calculations based on numerical integration of the 
problems of determining the components a, 7 and a, 8. We chose for the calculations a composite fibre 
material will the following characteristics of elasticity 

E’ = 3.685 x lo9 Pa, E = 9.398 x lo9 Pa, G’ = 1.272 x lo9 Pa, v’ = 0.0147 and v = 0.375 

For calculations on the constants cd we obtain 

cl1 = 5.294 x lo9 Pa, cl2 = 1.770 x 10’ Pa, cl3 = 0.104 x 10’ Pa, c33 = 3.688 x 10’ Pa and c44 = G’ 

2 

0 

-2 

1 

Fig. 1 
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Figure 1 shows graphs of the dimensionless elements of the stiffness matrix 

d,, d J,, D,, = 0, D,, = -+, D,, _ 

d,, 4, JP B 
as a function of z. for p = 0.1 (the continuous curves); we also show graphs of D12 against r. for 
p = 0.4 and 0.8 (the dashed curve and the dash-dot curve). 

The curves describing the behaviour of IIt2 indicate that when a cylinder is stretched, an “untwisting” 
effect occurs for small values of the parameter, while a “twisting” effect occurs for fairly large values 
of the parameter. 

This research was supported financially by the Russian Foundation for Basic Research (01-01-00454, 
00-15-96087). 
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